Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Malar J ; 23(1): 31, 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38254131

RESUMO

BACKGROUND: The emergence of insecticide resistance and outdoor transmission in malaria-endemic areas underlines the urgent need to develop innovative tools, such as spatial repellents (SR), that may circumvent this residual transmission. With limited options for effective insecticides, regular resistance monitoring is warranted for selecting and using appropriate tools. This study evaluates the pyrethroid knockdown resistance (kdr) allele before and after implementing a transfluthrin-based spatial repellent (SR) intervention in placebo-treated clusters. METHODS: This study looks at the frequency distribution of the kdr allele in Sumba Island from June 2015 to August 2018. Insecticide susceptibility tests were carried out on female Anopheles sp. aged 3-5 days against permethrin 21.5 µg/ml, deltamethrin 12.5 µg/ml, and transfluthrin 10 µg/ml using CDC bottle assay. PCR sequencing of representative samples from adult mosquito collections and insecticide tests revealed the presence of kdr mutations (L1014F and L1014S) in the VGSC gene. RESULTS: A total of 12 Anopheles species, Anopheles tesselatus, Anopheles. aconitus, Anopheles barbirostris, Anopheles kochi, Anopheles annularis, Anopheles maculatus, Anopheles sundaicus, Anopheles flavirostris, Anopheles balabacensis, Anopheles indefinitus, Anopheles subpictus, and Anopheles vagus were analysed. Anopheles vagus and An. sundaicus predominated in the larval populations. Susceptibility assays for all insecticides identified fully susceptible phenotypes in all species examined. Anopheles increasing frequency of kdr mutant alleles during the 3 year SR deployment was observed in both SR-treated and placebo areas, a statistically significant increase occurred in each arm. However, it is unclear how significant SR is in causing the increase in mutant alleles. The L1014S, knockdown resistance east type (kdr-e) allele was detected for the first time among the mosquito samples in this study. The L1014F, knockdown resistance west type (kdr-w) allele and heteroduplex form (wild-type-mutant) were found in almost all Anopheles species examined, including An. vagus, An. aconitus, An. subpictus, An. tesselatus, An. annularis, An. flavirostris and An. sundaicus. CONCLUSION: The presence of fully susceptible phenotypes over time, along with an increase in the frequency distribution of the L1014F/S mutations post-intervention, suggest drivers of resistance external to the study, including pyrethroid use in agriculture and long-lasting insecticidal nets (LLINs). However, this does not negate possible SR impacts that support resistance. More studies that enable the comprehension of possible SR-based drivers of resistance in mosquitoes need to be conducted.


Assuntos
Anopheles , Ciclopropanos , Fluorbenzenos , Inseticidas , Animais , Feminino , Anopheles/genética , Inseticidas/farmacologia , Alelos , Indonésia , Resistência a Inseticidas/genética , Permetrina
3.
Malar J ; 21(1): 354, 2022 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-36443817

RESUMO

This review article aims to investigate the genotypic profiles of Plasmodium falciparum and Plasmodium vivax isolates collected across a wide geographic region and their association with resistance to anti-malarial drugs used in Indonesia. A systematic review was conducted between 1991 and date. Search engines, such as PubMed, Science Direct, and Google Scholar, were used for articles published in English and Indonesian to search the literature. Of the 471 initially identified studies, 61 were selected for 4316 P. falciparum and 1950 P. vivax individual infections. The studies included 23 molecular studies and 38 therapeutic efficacy studies. K76T was the most common pfcrt mutation. K76N (2.1%) was associated with the haplotype CVMNN. By following dihydroartemisinin-piperaquine (DHA-PPQ) therapy, the mutant pfmdr1 alleles 86Y and 1034C were selected. Low prevalence of haplotype N86Y/Y184/D1246Y pfmdr1 reduces susceptibility to AS-AQ. SNP mutation pvmdr1 Y976F reached 96.1% in Papua and East Nusa Tenggara. Polymorphism analysis in the pfdhfr gene revealed 94/111 (84.7%) double mutants S108N/C59R or S108T/A16V in Central Java. The predominant pfdhfr haplotypes (based on alleles 16, 51, 59,108, 164) found in Indonesia were ANCNI, ANCSI, ANRNI, and ANRNL. Some isolates carried A437G (35.3%) or A437G/K540E SNPs (26.5%) in pfdhps. Two novel pfdhps mutant alleles, I588F/G and K540T, were associated with six pfdhps haplotypes. The highest prevalence of pvdhfr quadruple mutation (F57L/S58R/T61M/S117T) (61.8%) was detected in Papua. In pvdhps, the only polymorphism before and after 2008 was 383G mutation with 19% prevalence. There were no mutations in the pfk13 gene reported with validated and candidate or associated k13 mutation. An increased copy number of pfpm2, associated with piperaquine resistance, was found only in cases of reinfection. Meanwhile, mutation of pvk12 and pvpm4 I165V is unlikely associated with ART and PPQ drug resistance. DHA-PPQ is still effective in treating uncomplicated falciparum and vivax malaria. Serious consideration should be given to interrupt local malaria transmission and dynamic patterns of resistance to anti-malarial drugs to modify chemotherapeutic policy treatment strategies. The presence of several changes in pfk13 in the parasite population is of concern and highlights the importance of further evaluation of parasitic ART susceptibility in Indonesia.


Assuntos
Antimaláricos , Artemisininas , Plasmodium vivax/genética , Plasmodium falciparum/genética , Indonésia , Antimaláricos/farmacologia , Polimorfismo de Nucleotídeo Único , Resistência a Medicamentos/genética
4.
PLoS One ; 17(11): e0276783, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36374859

RESUMO

Malaria vector control interventions in Sumba, Indonesia, have not been able to eliminate malaria. Human drivers of exposure to Anopheles bites were investigated as part of a larger clinical trial evaluating the impact of a spatial repellent product on malaria incidence. Human behavioral observations (HBOs) evaluating temporal and spatial presence, sleeping behaviors, and insecticide treated net (ITN) use, were collected parallel to entomological collections-indoor and outdoor human landing catches (HLCs), and house hold surveys. Data demonstrates that mosquito access to humans, enabled by structurally open houses, is evident by the similar entomological landing rates both inside and outside households. The presence of animals inside houses was associated with increased mosquito entry-however, the number of humans present inside houses was not related to increased mosquito landing. Analyzing mosquito landing rates with human behavior data enables the spatial and temporal estimation of exposure to Anopheles bites, accounting for intervention (ITN) presence and usage. Human behavior adjusted exposure to Anopheles bites was found to be highest in the early in the evening, but continued at lower levels throughout the night. Over the night, most exposure (53%) occurred when people were indoors and not under the protection of nets (asleep or awake) followed by exposure outside (44%). Characterized gaps in protection are outdoor exposure as well as exposure indoors-when awake, and when asleep and not using ITNs. Interestingly, in the primary trial, even though there was not a significant impact of the spatial repellent on vector biting rates by themselves (16%), when factoring in human behavior, there was approximately 28% less exposure in the intervention arm than in the placebo arm. The treated arm had less human behavior adjusted bites in all spaces evaluated though there was proportionally higher exposure indoors. This analysis points to the importance of using HBOs both towards understanding gaps in protection as well as how interventions are evaluated. To mitigate ongoing transmission, understanding context specific spatial and temporal exposure based on the interactions of vectors, humans and interventions would be vital for a directed evidence-based control or elimination strategy.


Assuntos
Anopheles , Mordeduras e Picadas de Insetos , Repelentes de Insetos , Inseticidas , Malária , Humanos , Animais , Malária/epidemiologia , Malária/prevenção & controle , Controle de Mosquitos , Indonésia/epidemiologia , Mosquitos Vetores , Mordeduras e Picadas de Insetos/epidemiologia , Repelentes de Insetos/farmacologia , Inseticidas/farmacologia , Comportamento Alimentar
5.
Malar J ; 21(1): 166, 2022 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-35659231

RESUMO

BACKGROUND: The East Nusa Tenggara province, Indonesia, contributed to 5% of malaria cases nationally in 2020, with other mosquito-borne diseases, such as dengue and filariasis also being endemic. Monitoring of spatial and temporal vector species compositions and bionomic traits is an efficient method for generating evidence towards intervention strategy optimization and meeting disease elimination goals. METHODS: The impact of a spatial repellent (SR) on human biting mosquitoes was evaluated as part of a parent cluster-randomized, double-blinded, placebo-controlled trial, in Sumba, East Nusa Tenggara. A 10-month (June 2015-March 2016) baseline study was followed by a 24-month intervention period (April 2016 to April 2018)-where half the clusters were randomly assigned either a passive transfluthrin emanator or a placebo control. RESULTS: Human-landing mosquito catches documented a reduction in landing rates related to the SR. Overall, there was a 16.4% reduction (21% indoors, and 11.3% outdoors) in human biting rates (HBR) for Anopheles. For Aedes, there was a 44.3% HBR reduction indoors and a 35.6% reduction outdoors. This reduction was 38.3% indoors and 39.1% outdoors for Armigeres, and 36.0% indoors and 32.3% outdoors for Culex species. Intervention impacts on the HBRs were not significant and are attributed to large inter-household and inter cluster variation. Anopheles flavirostris, Anopheles balabacensis and Anopheles maculatus individually impacted the overall malaria infections hazard rate with statistically significance. Though there was SR-based protection against malaria for all Anopheles species (except Anopheles sundaicus), only five (Anopheles aconitus, Anopheles kochi, Anopheles tessellatus, An. maculatus and An. sundaicus) demonstrated statistical significance. The SR numerically reduced Anopheles parity rates indoors and outdoors when compared to the placebo. CONCLUSION: Evidence demonstrating that Anopheles vectors bite both indoors and outdoors indicates that currently implemented indoor-based vector control tools may not be sufficient to eliminate malaria. The documented impact of the SR intervention on Aedes, Armigeres and Culex species points to its importance in combatting other vector borne diseases. Studies to determine the impact of spatial repellents on other mosquito-borne diseases is recommended.


Assuntos
Aedes , Anopheles , Culex , Repelentes de Insetos , Malária , Animais , Humanos , Indonésia , Repelentes de Insetos/farmacologia , Malária/prevenção & controle , Controle de Mosquitos/métodos , Mosquitos Vetores
6.
Malar J ; 21(1): 206, 2022 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-35768835

RESUMO

BACKGROUND: Rapid emergence of Plasmodium resistance to anti-malarial drug mainstays has driven a continual effort to discover novel drugs that target different biochemical pathway (s) during infection. Plasma membrane Calcium + 2 ATPase (PMCA4), a novel plasma membrane protein that regulates Calcium levels in various cells, namely red blood cell (RBC), endothelial cell and platelets, represents a new biochemical pathway that may interfere with susceptibility to malaria and/or severe malaria. METHODS: This study identified several pharmacological inhibitors of PMCA4, namely ATA and Resveratrol, and tested for their anti-malarial activities in vitro and in vivo using the Plasmodium falciparum 3D7 strain, the Plasmodium berghei ANKA strain, and Plasmodium yoelii 17XL strain as model. RESULTS: In vitro propagation of P. falciparum 3D7 strain in the presence of a wide concentration range of the inhibitors revealed that the parasite growth was inhibited in a dose-dependent manner, with IC50s at 634 and 0.231 µM, respectively. RESULTS: The results confirmed that both compounds exhibit moderate to potent anti-malarial activities with the strongest parasite growth inhibition shown by resveratrol at 0.231 µM. In vivo models using P. berghei ANKA for experimental cerebral malaria and P. yoelii 17XL for the effect on parasite growth, showed that the highest dose of ATA, 30 mg/kg BW, increased survival of the mice. Likewise, resveratrol inhibited the parasite growth following 4 days intraperitoneal injection at the dose of 100 mg/kg BW. CONCLUSION: The findings indicate that the PMCA4 of the human host may be a potential target for novel anti-malarials, either as single drug or in combination with the currently available effective anti-malarials.


Assuntos
Antimaláricos , Malária Cerebral , Parasitos , Animais , Cálcio/farmacologia , Camundongos , ATPases Transportadoras de Cálcio da Membrana Plasmática , Plasmodium berghei , Plasmodium falciparum , Resveratrol/farmacologia
7.
PLoS Negl Trop Dis ; 16(3): e0010316, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35312689

RESUMO

Mosquitoes are important vectors that transmit pathogens to human and other vertebrates. Each mosquito species has specific ecological requirements and bionomic traits that impact human exposure to mosquito bites, and hence disease transmission and vector control. A study of human biting mosquitoes and their bionomic characteristics was conducted in West Sumba and Southwest Sumba Districts, Nusa Tenggara Timur Province, Indonesia from May 2015 to April 2018. Biweekly human landing catches (HLC) of night biting mosquitoes both indoors and outdoors caught a total of 73,507 mosquito specimens (59.7% non-Anopheles, 40.3% Anopheles). A minimum of 22 Culicinae species belonging to four genera (Aedes, Armigeres, Culex, Mansonia), and 13 Anophelinae species were identified. Culex quinquefasciatus was the dominant Culicinae species, Anopheles aconitus was the principal Anopheles species inland, while An. sundaicus was dominant closer to the coast. The overall human biting rate (HBR) was 10.548 bites per person per night (bpn) indoors and 10.551 bpn outdoors. Mosquitoes biting rates were slightly higher indoors for all genera with the exception of Anopheles, where biting rates were slightly higher outdoors. Diurnal and crepuscular Aedes and Armigeres demonstrated declining biting rates throughout the night while Culex and Anopheles biting rates peaked before midnight and then declined. Both anopheline and non-anopheline populations did not have a significant association with temperature (p = 0.3 and 0.88 respectively), or rainfall (p = 0.13 and 0.57 respectively). The point distribution of HBR and seasonal variables did not have a linear correlation. Data demonstrated similar mosquito-human interactions occurring outdoors and indoors and during early parts of the night implying both indoor and outdoor disease transmission potential in the area-pointing to the need for interventions in both spaces. Integrated vector analysis frameworks may enable better surveillance, monitoring and evaluation strategies for multiple diseases.


Assuntos
Anopheles , Culex , Animais , Ecologia , Humanos , Indonésia , Mosquitos Vetores
8.
Malar J ; 21(1): 95, 2022 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-35305658

RESUMO

BACKGROUND: Dihydroartemisinin-piperaquine (DHA-PPQ) has been adopted as first-line therapy for uncomplicated falciparum malaria in Indonesia since 2010. The efficacy of DHA-PPQ was evaluated in 2 sentinel sites in Keerom District, Papua and Merangin District, Jambi, Sumatra from April 2017 to April 2018. METHODS: Clinical and parasitological parameters were monitored over a 42-day period following the World Health Organization standard in vivo protocol and subjects meeting the inclusion criteria were treated with DHA-PPQ once daily for 3 days, administered orally. RESULTS: In Papua, 6339 subjects were screened through active and passive cases detection. Of the 114 falciparum and 81 vivax cases enrolled, 102 falciparum and 80 vivax cases completed the 42 day follow up, and 12 falciparum and 1 vivax cases were either lost to follow up or withdrawn. Kaplan-Meier analysis of microscopy readings of 102 falciparum cases revealed 93.1% (95% CI 86.4-97.2) as Adequate Clinical and Parasitological Response (ACPR). No delay in parasite clearance nor severe adverse reaction was observed. Recurrent parasites of Plasmodium falciparum were detected in 7 cases and categorized as late treatment failures (LTF) at days 21, 35, and 42 and one of which was reinfected by Plasmodium vivax at day 42. Two cases were confirmed as recrudescent infection and 4 were re-infection. The PCR-corrected DHA-PPQ efficacy for P. falciparum was 97.9% (95% CI 92.7-99.7). Of the 80 cases of P. vivax that were followed up, 71 cases were completely cured and classified as ACPR (88.8%, 95% CI 79.7-94.7) and 9 cases showed recurrent infection at days 35 and 42, and classified as LTF. In Sumatra, of the 751 subjects screened, 35 vivax subjects enrolled, 34 completed the 42 day follow up. Thirty-three cases were completely cured and classified as ACPR (97.1%, 95% CI 84.7-99.9) and 1 recurrent infection was observed and classified as LTF. No delay in parasite clearance nor severe adverse reaction was observed. Analysis of the Pfk13 gene in P. falciparum cases from Papua revealed no mutations associated with artemisinin resistance in the 20 SNPs previously reported. Analysis of the Pfpm2 gene at day 0 and day of recurrence in recrudescent cases revealed the same single copy number, whereas 3 of the 4 re-infection cases carried 2-3 Pfpm2 gene copy numbers. CONCLUSION: Treatment of falciparum and vivax malaria cases with DHA-PPQ showed a high efficacy and safety.


Assuntos
Antimaláricos , Artemisininas , Malária Vivax , Antimaláricos/efeitos adversos , Artemisininas/efeitos adversos , Humanos , Indonésia , Malária Vivax/tratamento farmacológico , Piperazinas , Plasmodium falciparum , Quinolinas
10.
Artigo em Inglês | MEDLINE | ID: mdl-33361303

RESUMO

Dihydroartemisinin-piperaquine (DP) is a long-acting artemisinin combination treatment that provides effective chemoprevention and has been proposed as an alternative antimalarial drug for intermittent preventive therapy in pregnancy (IPTp). Several pharmacokinetic studies have shown that dose adjustment may not be needed for the treatment of malaria in pregnancy with DP. However, there are limited data on the optimal dosing for IPTp. This study aimed to evaluate the population pharmacokinetics of piperaquine given as IPTp in pregnant women. Pregnant women were enrolled in clinical trials conducted in Kenya and Indonesia and treated with standard 3-day courses of DP, administered in 4- to 8-week intervals from the second trimester until delivery. Pharmacokinetic blood samples were collected for piperaquine drug measurements before each treatment round, at the time of breakthrough symptomatic malaria, and at delivery. Piperaquine population pharmacokinetic properties were investigated using nonlinear mixed-effects modeling with a prior approach. In total, data from 366 Kenyan and 101 Indonesian women were analyzed. The pharmacokinetic properties of piperaquine were adequately described using a flexible transit absorption (n = 5) followed by a three-compartment disposition model. Gestational age did not affect the pharmacokinetic parameters of piperaquine. After three rounds of monthly IPTp, 9.45% (95% confidence interval [CI], 1.8 to 26.5%) of pregnant women had trough piperaquine concentrations below the suggested target concentration (10.3 ng/ml). Translational simulations suggest that providing the full treatment course of DP at monthly intervals provides sufficient protection to prevent malaria infection. Monthly administration of DP has the potential to offer optimal prevention of malaria during pregnancy. (This study has been registered at ClinicalTrials.gov under identifier NCT01669941 and in the ISRCTN under number ISRCTN34010937.).


Assuntos
Antimaláricos , Malária Falciparum , Malária , Complicações Parasitárias na Gravidez , Quinolinas , Antimaláricos/uso terapêutico , Combinação de Medicamentos , Feminino , Humanos , Indonésia , Quênia , Malária/tratamento farmacológico , Malária/prevenção & controle , Malária Falciparum/tratamento farmacológico , Gravidez , Complicações Parasitárias na Gravidez/tratamento farmacológico , Complicações Parasitárias na Gravidez/prevenção & controle , Quinolinas/uso terapêutico
11.
PLoS Med ; 17(11): e1003393, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33211712

RESUMO

BACKGROUND: There is a high risk of Plasmodium vivax parasitaemia following treatment of falciparum malaria. Our study aimed to quantify this risk and the associated determinants using an individual patient data meta-analysis in order to identify populations in which a policy of universal radical cure, combining artemisinin-based combination therapy (ACT) with a hypnozoitocidal antimalarial drug, would be beneficial. METHODS AND FINDINGS: A systematic review of Medline, Embase, Web of Science, and the Cochrane Database of Systematic Reviews identified efficacy studies of uncomplicated falciparum malaria treated with ACT that were undertaken in regions coendemic for P. vivax between 1 January 1960 and 5 January 2018. Data from eligible studies were pooled using standardised methodology. The risk of P. vivax parasitaemia at days 42 and 63 and associated risk factors were investigated by multivariable Cox regression analyses. Study quality was assessed using a tool developed by the Joanna Briggs Institute. The study was registered in the International Prospective Register of Systematic Reviews (PROSPERO: CRD42018097400). In total, 42 studies enrolling 15,341 patients were included in the analysis, including 30 randomised controlled trials and 12 cohort studies. Overall, 14,146 (92.2%) patients had P. falciparum monoinfection and 1,195 (7.8%) mixed infection with P. falciparum and P. vivax. The median age was 17.0 years (interquartile range [IQR] = 9.0-29.0 years; range = 0-80 years), with 1,584 (10.3%) patients younger than 5 years. 2,711 (17.7%) patients were treated with artemether-lumefantrine (AL, 13 studies), 651 (4.2%) with artesunate-amodiaquine (AA, 6 studies), 7,340 (47.8%) with artesunate-mefloquine (AM, 25 studies), and 4,639 (30.2%) with dihydroartemisinin-piperaquine (DP, 16 studies). 14,537 patients (94.8%) were enrolled from the Asia-Pacific region, 684 (4.5%) from the Americas, and 120 (0.8%) from Africa. At day 42, the cumulative risk of vivax parasitaemia following treatment of P. falciparum was 31.1% (95% CI 28.9-33.4) after AL, 14.1% (95% CI 10.8-18.3) after AA, 7.4% (95% CI 6.7-8.1) after AM, and 4.5% (95% CI 3.9-5.3) after DP. By day 63, the risks had risen to 39.9% (95% CI 36.6-43.3), 42.4% (95% CI 34.7-51.2), 22.8% (95% CI 21.2-24.4), and 12.8% (95% CI 11.4-14.5), respectively. In multivariable analyses, the highest rate of P. vivax parasitaemia over 42 days of follow-up was in patients residing in areas of short relapse periodicity (adjusted hazard ratio [AHR] = 6.2, 95% CI 2.0-19.5; p = 0.002); patients treated with AL (AHR = 6.2, 95% CI 4.6-8.5; p < 0.001), AA (AHR = 2.3, 95% CI 1.4-3.7; p = 0.001), or AM (AHR = 1.4, 95% CI 1.0-1.9; p = 0.028) compared with DP; and patients who did not clear their initial parasitaemia within 2 days (AHR = 1.8, 95% CI 1.4-2.3; p < 0.001). The analysis was limited by heterogeneity between study populations and lack of data from very low transmission settings. Study quality was high. CONCLUSIONS: In this meta-analysis, we found a high risk of P. vivax parasitaemia after treatment of P. falciparum malaria that varied significantly between studies. These P. vivax infections are likely attributable to relapses that could be prevented with radical cure including a hypnozoitocidal agent; however, the benefits of such a novel strategy will vary considerably between geographical areas.


Assuntos
Antimaláricos/uso terapêutico , Combinação Arteméter e Lumefantrina/uso terapêutico , Malária Vivax/tratamento farmacológico , Plasmodium vivax/patogenicidade , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Artemisininas/uso terapêutico , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Malária/tratamento farmacológico , Malária Falciparum/tratamento farmacológico , Masculino , Pessoa de Meia-Idade , Parasitemia/tratamento farmacológico , Plasmodium vivax/efeitos dos fármacos , Adulto Jovem
12.
PLoS Negl Trop Dis ; 14(7): e0008385, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32614914

RESUMO

Anopheles sundaicus s.l. is an important malaria vector primarily found in coastal landscapes of western and central Indonesia. The species complex has a wide geographical distribution in South and Southeast Asia and exhibits ecological and behavioural variability over its range. Studies on understanding the distribution of different members in the complex and their bionomics related to malaria transmission might be important guiding more effective vector intervention strategies. Female An. sundaicus s.l. were collected from seven provinces, 12 locations in Indonesia representing Sumatra: North Sumatra, Bangka-Belitung, South Lampung, and Bengkulu; in Java: West Java; and the Lesser Sunda Islands: West Nusa Tenggara and East Nusa Tenggara provinces. Sequencing of ribosomal DNA ITS2 gene fragments and two mitochondrial DNA gene markers, COI and cytb, enabled molecular identification of morphologically indistinguishable members of the complex. Findings allowed inference on the distribution of the An. sundaicus s.l. present in Indonesia and further illustrate the phylogenetic relationships of An. epiroticus within the complex. A total of 370 An. sundaicus s.l specimens were analysed for the ITS2 fragment. The ITS2 sequence alignment revealed two consistent species-specific point mutations, a T>C transition at base 479 and a G>T transversion at base 538 that differentiated five haplotypes: TG, CG, TT, CT, and TY. The TG haplotype matched published An. epiroticus-indicative sequences from Thailand, Vietnam and peninsular Malaysia. The previously described insertion event (base 603) was observed in all identified specimens. Analysis of the COI and cytb genes revealed no consistent nucleotide variations that could definitively distinguish An. epiroticus from other members in the Sundaicus Complex. The findings indicate and support the existence of An. epiroticus in North Sumatra and Bangka-Belitung archipelago. Further studies are recommended to determine the full distributional extent of the Sundaicus complex in Indonesia and investigate the role of these species in malaria transmission.


Assuntos
Anopheles , Malária/transmissão , Mosquitos Vetores , Animais , Anopheles/genética , Citocromos b/genética , Demografia , Complexo IV da Cadeia de Transporte de Elétrons/genética , Feminino , Humanos , Indonésia , Filogenia
13.
Am J Trop Med Hyg ; 103(1): 344-358, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32431275

RESUMO

A cluster-randomized, double-blinded, placebo-controlled trial was conducted to estimate the protective efficacy (PE) of a spatial repellent (SR) against malaria infection in Sumba, Indonesia. Following radical cure in 1,341 children aged ≥ 6 months to ≤ 5 years in 24 clusters, households were given transfluthrin or placebo passive emanators (devices designed to release vaporized chemical). Monthly blood screening and biweekly human-landing mosquito catches were performed during a 10-month baseline (June 2015-March 2016) and a 24-month intervention period (April 2016-April 2018). Screening detected 164 first-time infections and an accumulative total of 459 infections in 667 subjects in placebo-control households, and 134 first-time and 253 accumulative total infections among 665 subjects in active intervention households. The 24-cluster protective effect of 27.7% and 31.3%, for time to first-event and overall (total new) infections, respectively, was not statistically significant. Purportedly, this was due in part to zero to low incidence in some clusters, undermining the ability to detect a protective effect. Subgroup analysis of 19 clusters where at least one infection occurred during baseline showed 33.3% (P-value = 0.083) and 40.9% (P-value = 0.0236, statistically significant at the one-sided 5% significance level) protective effect to first infection and overall infections, respectively. Among 12 moderate- to high-risk clusters, a statistically significant decrease in infection by intervention was detected (60% PE). Primary entomological analysis of impact was inconclusive. Although this study suggests SRs prevent malaria, additional evidence is required to demonstrate the product class provides an operationally feasible and effective means of reducing malaria transmission.


Assuntos
Ciclopropanos/administração & dosagem , Fluorbenzenos/administração & dosagem , Habitação , Inseticidas/administração & dosagem , Malária/prevenção & controle , Pré-Escolar , Método Duplo-Cego , Feminino , Humanos , Indonésia , Lactente , Repelentes de Insetos , Masculino , Controle de Mosquitos , Mosquitos Vetores
14.
Lancet Infect Dis ; 19(9): 973-987, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31353217

RESUMO

BACKGROUND: Plasmodium falciparum and Plasmodium vivax infections are important causes of adverse pregnancy outcomes in the Asia-Pacific region. We hypothesised that monthly intermittent preventive treatment (IPT) or intermittent screening and treatment (IST) with dihydroartemisinin-piperaquine is more effective in reducing malaria in pregnancy than the existing single screening and treatment (SST) strategy, which is used to screen women for malaria infections at the first antenatal visit followed by passive case detection, with management of febrile cases. METHODS: We did an open-label, three-arm, cluster-randomised, superiority trial in Sumba (low malaria transmission site) and Papua (moderate malaria transmission site), Indonesia. Eligible participants were 16-30 weeks pregnant. Clusters (antenatal clinics with at least ten new pregnancies per year matched by location, size, and malaria risk) were randomly assigned (1:1:1) via computer-generated lists to IPT, IST, or SST clusters. In IPT clusters, participants received the fixed-dose combination of dihydroartemisinin-piperaquine (4 and 18 mg/kg per day). In IST clusters, participants were screened with malaria rapid diagnostic tests once a month, whereas, in SST clusters, they were screened at enrolment only. In all groups, participants with fever were tested for malaria. Any participant who tested positive received dihydroartemisinin-piperaquine regardless of symptoms. The primary outcome was malaria infection in the mother at delivery. Laboratory staff were unaware of group allocation. Analyses included all randomly assigned participants contributing outcome data and were adjusted for clustering at the clinic level. This trial is complete and is registered with ISRCTN, number 34010937. FINDINGS: Between May 16, 2013, and April 21, 2016, 78 clusters (57 in Sumba and 21 in Papua) were randomly assigned to SST, IPT, or IST clusters (26 clusters each). Of 3553 women screened for eligibility, 2279 were enrolled (744 in SST clusters, 681 in IPT clusters, and 854 in IST clusters). At enrolment, malaria prevalence was lower in IST (5·7%) than in SST (12·6%) and IPT (10·6%) clusters. At delivery, malaria prevalence was 20·2% (128 of 633) in SST clusters, compared with 11·6% (61 of 528) in IPT clusters (relative risk [RR] 0·59, 95% CI 0·42-0·83, p=0·0022) and 11·8% (84 of 713) in IST clusters (0·56, 0·40-0·77, p=0·0005). Conditions related to the pregnancy, the puerperium, and the perinatal period were the most common serious adverse events for the mothers, and infections and infestations for the infants. There were no differences between groups in serious adverse events in the mothers or in their infants. INTERPRETATION: IST was associated with a lower prevalence of malaria than SST at delivery, but the prevalence of malaria in this group was also lower at enrolment, making interpretation of the effect of IST challenging. Further studies with highly sensitive malaria rapid diagnostic tests should be considered. Monthly IPT with dihydroartemisinin-piperaquine is a promising alternative to SST in areas in the Asia-Pacific region with moderate or high transmission of malaria. FUNDING: Joint Global Health Trials Scheme of the Medical Research Council, Department for International-Development, and the Wellcome Trust.


Assuntos
Antimaláricos/administração & dosagem , Artemisininas/administração & dosagem , Malária Falciparum/epidemiologia , Malária Falciparum/prevenção & controle , Malária Vivax/epidemiologia , Malária Vivax/prevenção & controle , Quinolinas/administração & dosagem , Adulto , Antimaláricos/efeitos adversos , Artemisininas/efeitos adversos , Combinação de Medicamentos , Feminino , Humanos , Indonésia/epidemiologia , Malária Falciparum/diagnóstico , Malária Falciparum/tratamento farmacológico , Malária Vivax/diagnóstico , Malária Vivax/tratamento farmacológico , Parto , Período Pós-Parto , Gravidez , Complicações Parasitárias na Gravidez/diagnóstico , Complicações Parasitárias na Gravidez/tratamento farmacológico , Complicações Parasitárias na Gravidez/epidemiologia , Complicações Parasitárias na Gravidez/prevenção & controle , Prevalência , Quinolinas/efeitos adversos , Adulto Jovem
15.
Parasitol Int ; 69: 93-98, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30550977

RESUMO

Retortamonas spp. has been reported as an intestinal parasite among various host organisms, including humans; however, its intra-genus molecular diversity has not yet been elucidated. Haplotypes of the 18S small subunit ribosomal RNA locus (1836-1899 bp) of Retortamonas spp. from humans (n = 8), pigs (n = 6), dogs (n = 1), goats (n = 16), water buffalos (n = 23), cattle (n = 7), rats (n = 3), and chickens (n = 5) were analyzed with references isolated from non-human mammals, amphibians, and insects. Phylogenetic and network analyses revealed a statistically supported three cluster formation among the vertebrate-isolated haplotypes, while insect-isolated haplotypes were independently clustered with Chilomastix. In the clade of vertebrate isolates, assemblage A (amphibian genotype), which included the amphibian references, was addressed as an out-group of the other clusters. Assemblage B (mammalian and chicken genotype) included most haplotypes from various mammals including humans with the haplotypes isolated from a chicken. Human isolates were all classified into this assemblage, thus assemblage B might correspond to R. intestinalis. Assemblage C (bovine genotype), which included specific haplotypes from water buffalos and cattle, was addressed as a sister lineage of assemblage B. Among the diversified haplotypes of assemblage B, a specific haplotype, which was identified from multiple host mammals (humans, dogs, pigs, cattle, water buffalos, elks, goats, and rats), indicates the potential zoonotic transmission of the Retortamonas among them. The genotyping classification of retortamonads could contribute to a better understanding of its molecular epidemiology, especially among humans and related host organisms.


Assuntos
Genótipo , Retortamonadídeos/classificação , Retortamonadídeos/genética , Animais , Búfalos/parasitologia , Bovinos/parasitologia , Galinhas/parasitologia , DNA de Protozoário/genética , Cães/parasitologia , Fezes/parasitologia , Redes Reguladoras de Genes , Cabras/parasitologia , Haplótipos , Humanos , Insetos/parasitologia , Intestinos/parasitologia , Filogenia , Proteínas de Protozoários/genética , RNA Ribossômico/genética , Ratos/parasitologia , Retortamonadídeos/isolamento & purificação , Suínos/parasitologia , Zoonoses/parasitologia
16.
Parasitol Res ; 117(9): 2841-2846, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29968038

RESUMO

Blastocystis sp. is a common intestinal protist found worldwide in a variety of animals, including humans. Currently, 17 subtypes (STs) of Blastocystis isolates from mammalian and avian host species have been reported based on the small subunit ribosomal RNA gene (SSU rDNA). Among these, human Blastocystis were only identified among STs 1-9. Except ST9, all other STs comprised isolates from humans and other animal species. Entire sequence data of the SSU rDNA of nine Blastocystis isolates from laboratory rats or guinea pigs previously showed ST4, whereas Blastocystis isolates from wild rodents have not been addressed genetically. In this study, Blastocystis infection in wild rodents was surveyed in Indonesia and Japan, and 11 and 12 rodent Blastocystis parasites were obtained from Rattus exulans and R. novercious, respectively. All new Blastocystis isolates from wild rodents were identified as ST4 based on the SSU rDNA sequences. The best tree inferred with the entire sequences of the SSU rDNA of all ST4 isolates including 17 data registered in GenBank clearly showed monophyletic ST4A and ST4B clades. Although ST4 isolates from laboratory rats were separated into these two clades, all Blastocystis isolates from wild rodents in the present study were positioned into the clade ST4A and further separated into two sub-clusters within the clade ST4A according to the location of the host species. Considering the fact that laboratory rats were susceptible to both ST4A and ST4B, separation of the monophyletic sub-clusters of Blastocystis isolates from Indonesian Polynesian rats and Japanese brown rats may indicate the presence of geographical variations rather than a host-specific separation. In either way, the robust host preference to rodent species of ST4 Blastocystis was also confirmed.


Assuntos
Infecções por Blastocystis/epidemiologia , Infecções por Blastocystis/veterinária , Blastocystis/isolamento & purificação , Doenças dos Roedores/epidemiologia , Animais , Blastocystis/genética , Infecções por Blastocystis/parasitologia , DNA de Protozoário/genética , DNA Ribossômico/genética , Cobaias , Especificidade de Hospedeiro , Humanos , Indonésia/epidemiologia , Japão/epidemiologia , Filogenia , Ratos , Doenças dos Roedores/parasitologia , Roedores/parasitologia
17.
Parasitol Int ; 65(6 Pt B): 780-784, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27080248

RESUMO

Blastocystis sp. is a common parasite found in human and animal fecal samples. Currently, human Blastocystis isolates are classified into nine subtypes (STs) based on the phylogeny of their small subunit ribosomal RNA genes (SSU rDNAs). Since eight of the nine STs, except for ST9, have been reported in both humans and animals, these parasites are considered to be potentially zoonotic STs. To evaluate whether zoonotic transmissions play a main role in the lifecycle of Blastocystis, STs derived from humans, domestic pigs, domestic chickens, and wild rodents in a community with poor hygiene in Sumba Island, Indonesia were surveyed. Although fecal cross-contaminations between humans and animals were likely common at the investigation site, the confirmed major Blastocystis STs, which were detected as intense bands on gels following PCR targeting of the SSU rDNA, were different in each host species. STs 1-3 were found in resident children, while ST5, ST7, and ST4 were found in domestic pigs and chickens, and in wild rodents, respectively. Faint bands of STs 1, 2, and 7 were detected in samples from pigs, while no minor STs were observed in samples from the other host species. The distinct distributions of the major STs among the host animals examined, including humans, indicate host specificity in the lifecycle of Blastocystis. Considering the coprophagous nature of pigs, the presence of minor STs observed only in pigs could be explained by the mechanical passage of contaminated fecal materials.


Assuntos
Infecções por Blastocystis/parasitologia , Blastocystis/genética , Higiene , Animais , Blastocystis/classificação , Blastocystis/isolamento & purificação , Infecções por Blastocystis/transmissão , Galinhas/parasitologia , DNA de Protozoário/genética , DNA Ribossômico/genética , Especificidade de Hospedeiro , Humanos , Indonésia , Roedores/parasitologia , Suínos/parasitologia
18.
Malar J ; 14: 420, 2015 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-26511932

RESUMO

BACKGROUND: Malaria in pregnancy poses a major public health problem in Indonesia with an estimated six million pregnancies at risk of Plasmodium falciparum or Plasmodium vivax malaria annually. In 2010, Indonesia introduced a screen and treat policy for the control of malaria in pregnancy at first antenatal visit using microscopy or rapid diagnostic tests (RDTs). A diagnostic study was conducted in Sumba, Indonesia to compare the performance of four different RDTs in predominately asymptomatic pregnant women under field condition. METHODS: Women were screened for malaria at antenatal visits using field microscopy and four HRP-2/pLDH combination RDTs (Carestart™, First-Response(®), Parascreen(®) and SD-Bioline(®)). The test results were compared with expert microscopy and nested PCR. End user experience of the RDTs in the field was assessed by questionnaire. RESULTS: Overall 950 were recruited and 98.7 % were asymptomatic. The prevalence of malaria was 3.0-3.4 % by RDTs, and 3.6, 5.0 and 6.6 % by field microscopy, expert microscopy and PCR, respectively. The geometric-mean parasite density was low (P. falciparum = 418, P. vivax = 147 parasites/µL). Compared with PCR, the overall sensitivity of the RDTs and field microscopy to detect any species was 24.6-31.1 %; specificities were >98.4 %. Relative to PCR, First-Response(®) had the best diagnostic accuracy (any species): sensitivity = 31.1 %, specificity = 98.9 % and diagnostic odds ratio = 39.0 (DOR). The DOR values for Carestart™, Parascreen(®), SD-Bioline(®), and field microscopy were 23.4, 23.7, 23.5 and 29.2, respectively. The sensitivity of Pan-pLDH bands to detect PCR confirmed P. vivax mono-infection were 8.6-13.0 %. The sensitivity of the HRP-2 band alone to detect PCR confirmed P. falciparum was 10.3-17.9 %. Pan-pLDH detected P. falciparum cases undetected by the HRP-2 band resulting in a better test performance when both bands were combined. First Response(®) was preferred by end-users for the overall practicality. CONCLUSION: The diagnostic accuracy to detect malaria among mostly asymptomatic pregnant women and perceived ease of use was slightly better with First-Response(®), but overall, differences between the four RDTs were small and performance comparable to field microscopy. Combination RDTs are a suitable alternative to field microscopy to screen for malaria in pregnancy in rural Indonesia. The clinical relevance of low density malaria infections detected by PCR, but undetected by RDTs or microscopy needs to be determined.


Assuntos
Cromatografia de Afinidade/métodos , Testes Diagnósticos de Rotina/métodos , Malária Falciparum/diagnóstico , Malária Vivax/diagnóstico , Programas de Rastreamento/métodos , Microscopia/métodos , Complicações Infecciosas na Gravidez/diagnóstico , Adolescente , Adulto , Antígenos de Protozoários/sangue , Estudos Transversais , Feminino , Humanos , Indonésia , Pessoa de Meia-Idade , Plasmodium falciparum/citologia , Plasmodium falciparum/genética , Plasmodium falciparum/imunologia , Plasmodium vivax/citologia , Plasmodium vivax/genética , Plasmodium vivax/imunologia , Reação em Cadeia da Polimerase , Gravidez , Adulto Jovem
19.
Malar J ; 14: 365, 2015 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-26395428

RESUMO

BACKGROUND: Sympatric existence of Plasmodium falciparum and Plasmodium vivax, and the practice of malaria treatment without microscopic confirmation suggest that the accidental treatment of vivax malaria with sulfadoxine-pyrimethamine (SP) is common. METHODS: In this study, the frequency distribution of alleles associated with SP resistance were analysed among the P. vivax infections from malariometric surveys and its association with SP treatment failure in clinical studies in Indonesia. The dhfr and dhps alleles were detected using PCR-RFLP method. RESULTS: Analysis of 159 P. vivax isolates from malariometric surveys and 69 samples from in vivo SP efficacy study revealed various the existence of various alleles of the pvdhfr and pfdhps genes including 57L/I, 58R, 61M, and 117N/T. Allele 13L of the dhfr gene and 553G of the dhps gene were not detected in any isolates examined in both studies. In the dhfr gene, tandem repeat type-A was the major tandem repeat observed in any isolates analysed. In the dhps gene, only the 383G allele was observed. Isolates carrying double, triple and quadruple mutants of dhfr gene were found in Lampung, Purworejo, Sumba, and Papua. Although this study revealed a wide distribution of dhfr and dhps alleles among the P. vivax isolates across a broad geographic regions in Indonesia, impact on SP efficacy was not observed in Sumba. CONCLUSION: With proper malaria diagnosis, SP may still be used as a rational anti-malarial drug either as a single prescription or in combination with artemisinin.


Assuntos
Antimaláricos/uso terapêutico , Di-Hidropteroato Sintase/genética , Frequência do Gene , Malária Vivax/tratamento farmacológico , Plasmodium vivax/enzimologia , Pirimetamina/uso terapêutico , Sulfadoxina/uso terapêutico , Tetra-Hidrofolato Desidrogenase/genética , Adolescente , Adulto , Antimaláricos/farmacologia , Criança , Pré-Escolar , Combinação de Medicamentos , Resistência a Medicamentos , Feminino , Humanos , Indonésia/epidemiologia , Malária Vivax/epidemiologia , Malária Vivax/parasitologia , Masculino , Pessoa de Meia-Idade , Plasmodium vivax/genética , Pirimetamina/farmacologia , Sulfadoxina/farmacologia , Inquéritos e Questionários , Falha de Tratamento , Adulto Jovem
20.
Korean J Parasitol ; 52(5): 471-8, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25352694

RESUMO

Trichomonad species inhabit a variety of vertebrate hosts; however, their potential zoonotic transmission has not been clearly addressed, especially with regard to human infection. Twenty-one strains of trichomonads isolated from humans (5 isolates), pigs (6 isolates), rodents (6 isolates), a water buffalo (1 isolate), a cow (1 isolate), a goat (1 isolate), and a dog (1 isolate) were collected in Indonesia and molecularly characterized. The DNA sequences of the partial 18S small subunit ribosomal RNA (rRNA) gene or 5.8S rRNA gene locus with its flanking regions (internal transcribed spacer region, ITS1 and ITS2) were identified in various trichomonads; Simplicimonas sp., Hexamastix mitis, and Hypotrichomonas sp. from rodents, and Tetratrichomonas sp. and Trichomonas sp. from pigs. All of these species were not detected in humans, whereas Pentatrichomonas hominis was identified in humans, pigs, the dog, the water buffalo, the cow, and the goat. Even when using the high-resolution gene locus of the ITS regions, all P. hominis strains were genetically identical; thus zoonotic transmission between humans and these closely related mammals may be occurring in the area investigated. The detection of Simplicimonas sp. in rodents (Rattus exulans) and P. hominis in water buffalo in this study revealed newly recognized host adaptations and suggested the existence of remaining unrevealed ranges of hosts in the trichomonad species.


Assuntos
Mamíferos , Infecções por Protozoários/parasitologia , Trichomonadida/classificação , Trichomonadida/genética , Animais , DNA de Protozoário/genética , DNA Espaçador Ribossômico/genética , Humanos , Indonésia/epidemiologia , Infecções por Protozoários/epidemiologia , RNA de Protozoário/genética , RNA Ribossômico 18S/genética , Especificidade da Espécie , Trichomonadida/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...